Can photo excitations heal defects in carbon nanotubes?

نویسندگان

  • Yoshiyuki Miyamoto
  • Savas Berber
  • Mina Yoon
  • Angel Rubio
چکیده

We extend the time-dependent density functional formalism to study the microscopic response of defective nanotubes to electronic excitations. We find the lifetime of electronic excitations in these nanostructures to be several orders of magnitude longer than in solids, necessitating the use of excited-state molecular dynamics to correctly describe the atomic motion. We find that electronically excited nanotubes with monatomic vacancies show an unexpected self-healing ability, which is intimately linked to their

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defect and Carrier Dynamics in Nanotubes under Electronic Excitations: Time-Dependent Density Functional Approaches

One of challenging application of carbon nanotubes is nano-scaled electronic device, in which precise control of defects and carriers is required in analogy of silicon-based technology. In this work, we show that optical excitations can be promising tools to analyze and control defects in nanotubes being alternative to conventional heattreatments. We performed ab initio calculations, which solv...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

Investigation of Vibrational Behavior of Perfect and Defective Carbon Nanotubes Using Non–Linear Mass–Spring Model

In the present study, the effects of arrangement and distribution of multifarious types of defects on fundamental frequency of carbon nanotubes are investigated with respect to different chirality and boundary conditions. Interatomic interactions between each pair of carbon atoms are modeled using two types of non–linear spring–like elements. To obtain more information about the influences of d...

متن کامل

Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes.

We describe interlayer force measurements during prolonged, cyclic telescoping motion of a multiwalled carbon nanotube. The force acting between the core and the outer casing is modulated by the presence of stable defects and generally exhibits ultralow friction, below the measurement limit of 1.4 x 10(-15) N/atom and total dissipation per cycle lower than 0.4 meV/atom. Defects intentionally in...

متن کامل

Carbon-based nanotechnology on a supercomputer

The quantum nature of phenomena dominating the behaviour of nanostructures raises new challenges when trying to predict and understand the physical behaviour of these systems. Addressing this challenge is imperative in view of the continuous reduction of device sizes, which is rapidly approaching the atomic level. Since even the most advanced experimental observations are subject to being funda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004